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This paper investigates the dynamic response of a finitely pre-strained bi-layered slab

resting on a rigid foundation to a time-harmonic oscillating moving load, within the

scope of the piecewise-homogeneous body model utilizing the 3D linearized wave

propagation theory in the initially stressed body. It is assumed that the materials of the

layers are highly elastic ones and their elasticity relations are given in terms of the

harmonic potential. Moreover, it is also assumed that the velocity of the line-located

time-harmonic oscillating moving load is constant as it acts on the free face of the upper

layer of the slab. Our investigations were carried out for a 2D problem (plane-strain

state) under subsonic velocity for a moving load in complete contact conditions. The

corresponding numerical results were obtained for the stiff upper layer and soft lower

layer system in which the constants of elasticity for the upper layer material are greater

than those of the lower layer material. Numerical results are presented and discussed

for the critical velocity and stress distribution for various values of the problem

parameters. In particular, it is established that with the oscillating frequency of the

moving load, the values of the critical velocity decrease. Moreover, it is established that

the initial stretching of the upper layer of the slab causes the critical velocity to increase

and the absolute values of the normal stresses acting on the mid-planes of the layers of

the slab to decrease.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. On the application fields for the model used

A bi-layered slab (with a soft lower and stiff upper layer) resting on a rigid foundation is usually used for modeling
floating-slab track systems with continuous slabs which are widely used to control vibration from underground trains [1].
This system is composed of the track which is mounted on a concrete slab resting on rubber bearings, glass fibers or steel
springs. Consequently, the principal components relevant to this system are rails, railpads, the floating slab and slab
bearings. The track-bed is modeled as a rigid foundation, as the stiffness of the slab bearings is normally much less than the
stiffness of the track-bed. At the same time, the system consisting of a bi-layered slab resting on a rigid foundation can be
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considered, in a certain sense, as the generalization of the system consisting of a layer+half-plane which has been used in
relevant investigations [2–8]. For example, this system generalization accounts for the waves reflected from the supporting
ground.

It is obvious that the total stiffness of the concrete layer containing the track, as well as the total stiffness of the rubber
layer containing the glass fibers, is different for different directions, i.e. the total stiffness of the mentioned layers is
anisotropic. This anisotropy can be modeled and controlled as initial stresses (strains) in these layers. Moreover, the initial
strains can occur by themselves in the layers and in many cases, the magnitude of these stresses has a large effect. The
source of these initial stresses or strains could be sharp changes in environmental conditions (i.e. temperature changes) [9]
which can cause roadbeds, aircraft runways, etc. to be initially stressed; alternately, the source could be the manufacturing
and assembly procedures of the systems considered, the action of the geostatic and geodynamic forces in the Earth’s crust
(which is modeled as a lower layer or as a half-plane in the corresponding investigations), etc. In fact, it is necessary to take
these initial stresses (strains) into account within the study of the dynamic response of vehicle-tracking systems to a
moving load. In these cases the excitation of the moving vehicle on the system mentioned is modeled as the action of an
oscillating moving load on that system.

Consequently, the model consisting of a finite pre-stained bi-layered slab resting on a rigid foundation under action of
an external oscillating moving load has real application possibilities. Nevertheless, the investigations and analyses
presented in the present paper will be made without any concretization to the fields of application. However, the obtained
results can be used in each aforementioned field under suitable selection of the values of the dimensionless problem
parameters.
1.2. A review of published results

We start this review with the investigation made in Ref. [2] in which the dynamical response of the system consisting of
a covering layer+half plane to a moving load has been studied. The equations of motion of the covering layer (plate) are
described within the scope of the Timoshenko theory, but the equation of motion of the half-plane is described within the
scope of the exact linear theory of elastodynamics. The plane-strain state is considered as is the load sinusoidally varying
along the load-moving direction; the line load is also examined. It has been assumed that the velocity of the moving load is
constant. For the sinusoidally varying load, it was established that for the system considered the resonance type effect
occurs in the case where a load of certain wave length moves with a velocity equal to the velocity of free waves of that wave
length. For the sinusoidal varying loading the sought values are expressed through ðDðcÞÞ�1, where DðcÞ ¼ 0 is a dispersion
equation of the previously mentioned waves (here c is a wave velocity). However, under action of the moving line load, the
sought values are expressed through

Rþ1
0 ð�ÞðDðxÞÞ�1 dx, and therefore the existence of the resonance type effect, expressed

through the dispersion equation DðxÞ ¼ 0 must have a double real root, i.e. this root must satisfy the equations DðxÞ ¼ 0 and
dDðxÞ=dx ¼ 0, simultaneously. As is normal in such cases, the phase velocity has a minimum and this velocity is known as
the critical velocity. It is obvious that the mentioned phase velocity equals the group velocity. The numerical examination
for the line load has been made for cases involving a relatively soft plate, i.e. for the case where ðG1=r1Þ=ðG=rÞo1:0; G1ðGÞ

and r1ðrÞ are the shear modulus and density, respectively, of the covering plate (half-plane) material and a relatively stiff
plate, i.e. ðG1=r1Þ=ðG=rÞ41:0. It is established that the critical velocity determined in the foregoing manner arises only for
those cases where ðG1=r1Þ=ðG=rÞ41:0, i.e. a relatively stiff plate.

The investigation started in [2], over time, has been improved and developed continuously; the latest iterations of this
development, the subjects of which are near to the subject of our present investigation, are described in papers [10,11] and
other references listed in these papers. In Ref. [10] the critical velocity of a point-located harmonic varying load moving
uniformly and acting on the free face plane of the plate resting on the rigid foundation is investigated. The motion of the
plate is described by the 3D equations of the linear theory of elastic waves. The critical velocity is determined as that
velocity which is equal to the group velocity. Moreover, in Ref. [10] it is noted that the elastic layer is taken as a model for
the track-supporting ballast, but the point-located harmonic varying moving load is taken as a model for train-sleeper
excitation. The corresponding boundary value problem is solved by employing exponential Fourier transforms over time
and for the spatial coordinates. According to the analyses of the obtained numerical results, it is established that the
harmonic variation of the moving load causes two critical velocities to exist; one is lower, but the other is higher, than the
Rayleigh wave velocity in the plate material. Note that similar results are also obtained in the present investigation which
will be discussed below.

In Ref. [11] the surface ground vibrations for a 2D model are considered, consisting of an elastic layer (possessing a small
viscosity), and a beam located inside the layer. It is supposed that the layer and beam are infinitely long in the horizontal
direction and rest on the rigid foundation. The motion of the beam is written within the scope of the Euler–Bernoulli
model. Moreover, it is assumed that the motion of the structure is caused by a point load, which moves uniformly along the
beam; three types of this load are considered, namely a constants load, a harmonically varying load and a stationary
random load. Note that all investigations carried out in Ref. [11] are also based on knowledge of the critical velocity which
is determined from the intersection of the straight line (known as a ‘‘kinematic invariant’’ [12,13]) and dispersion curves of
the corresponding wave propagation. Moreover, under action of the external harmonically varying load the mentioned
dispersion curves are plotted both for positive and negative wave numbers, because the harmonically varying load can
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radiate waves with a negative phase velocity. It should also be noted, in all the investigations discussed above, that the
surface displacements are studied as well. But the stress distribution in the constituents of the system considered, and
stresses acting on the interface planes, have essentially not been studied. Moreover, in the foregoing studies the reference
particularities of these systems are not taken into account, one of which is the initial stresses in the component of those
sources which have been discussed above. The first attempt to account for the initial stresses on the values of the critical
velocity of the moving load was made in Ref. [9] where a system consisting of an ice plate resting on a water layer was
considered. In this case the motion of the plate is described within the scope of the Kirchhoff theory and it is established
that the initial stretching (compression) causes an increase (decrease) in the values of the critical velocity.

It is obvious that more accurate and trustworthy results for the types of problems related to initially stressed systems
can be attained within the scope of the 3D linearized theory of elastic waves in initially stressed bodies (TLTEWISB). The
construction of TLTEWISB field equations and their application to wave propagation problems are detailed in [14–21].
Furthermore, through the application of TLTEWISB, the time-harmonic stress field in layered pre-strained bodies has been
studied in Refs. [22–25]. A more detailed review of these investigations is given in Refs. [26,27].

Nevertheless, within the framework of TLTEWISB, few studies have been done on the dynamic response to the moving
load of a pre-strained layered half-space (Refs. [3–6]). In Ref. [3], as in Ref. [2], the dynamic response was considered for a
system consisting of a covering layer and pre-strained half-plane. The equation of motion for the covering layer was
described by Timoshenko plate theory, but the equation of motion for the half plane was described by TLTEWISB. The
solution to the corresponding boundary value problem was determined by using the exponential Fourier integral
transformation. Corresponding numerical investigations were made for the case where constitutive relations for the half-
plane material were described in terms of harmonic potential. Moreover, it was assumed that the speed of the moving load
was constant and the subsonic case had been taken into consideration. These numerical investigations led to further study
of the parameters’ influence on the critical velocity in the second study (carried out in Ref. [4]) utilizing the complex
potentials of TLTEWISB. As in [2], the numerical results attained in [3] show that a critical velocity occurs for a relatively
stiff plate.

In Refs. [5,6], the investigations in [3,4] were developed for the case where the velocity of the moving load is supersonic.
This development was made for an incompressible (Ref. [5]) as well as for compressible materials (Ref. [6]). All
investigations carried out in Refs. [3–6] were made for 2D problems (plane-strain state).

The investigation carried out in Ref. [7] employed the findings of Refs. [3,4] in developing a case where the covering
layer is also strained initially, and where the equation of motion for this layer is also described by TLTEWISB; from this, the
influence of the problem parameters on the critical velocity was studied. However, in [7] it is assumed that the materials of
the covering and half-plane are isotropic. This assumption significantly restricts theoretical investigations in terms of
controlling the critical velocity values for the moving load and the stresses acting on the interface plane through the
mechanical properties of the layer and half-plane materials. Therefore, the study made in Ref. [8] further develops the
investigation detailed in [7] for the case where the materials of the covering layer and half-plane are anisotropic
(orthotropic). The results of the investigations carried out in Refs. [7,8] also show that a critical velocity occurs in the case
where the modulus of elasticity in the load moving direction is greater than that of the half-plane material.
1.3. The scope of the present paper

As noted in Refs. [1,10,11,28] and many others, in reality high-speed trains, cars and other high speed transportation
vehicles modeled as moving loads are accompanied by their own oscillations. To determine how these accompanying
oscillations act on the dynamic response of the pre-strained system considered requires corresponding additional
investigations. These investigations are the scope of the present paper. A finite pre-strained bi-layered slab resting on a
rigid foundation is considered herein because, as has been noted already, the system consisting of a bi-layered slab and
rigid foundation, in many cases, is a more general and appropriate one for the modeling of roads than the system consisting
of a covering layer and half-space. The investigations are carried out for 2D problems, i.e. for the plane strain state.

The other new aspect of the present investigation is the following. In Refs. [7,8] it was assumed that the initial strains in
the components of the system considered are small strains and the initial stress–strain state is determined within the
linear theory of elasticity. However, in the present paper it is assumed that the initial strains in the mentioned components
are finite ones and the initial stress–strain state is determined within the scope of the nonlinear theory of elasticity. In this
case it is assumed that the materials of the layers of the slab are highly elastic and these layers are finitely pre-strained. At
the same time, it is assumed that the mechanical relations of these materials are defined by the harmonic potential. Thus,
the main differences between the present work and the previous investigations [3–8] are related to the moving load
dynamics acting on a pre-stressed layered medium and are carried out within the scope of the TLTEWISB. These differences
can be summarized as follows:
(i)
 in the present work the dynamics of an oscillating moving load are studied, but in the previous ones the dynamics of a
constant moving load were considered;
(ii)
 in the present work the subject of our investigations is a bi-layered slab resting on a rigid foundation, but in the
previous works the subject of the investigations was a system consisting of a covering layer and half-plane;
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(iii)
 in the present work it is assumed that the initial strains exist in each constituent of the system considered and these
strains are finite ones, but in the previous investigations (as in [7,8]) it was assumed that the initial strains were small
ones, i.e. determined within the scope of the linear theory of elasticity, or (as in [3–6]) it was assumed that the initial
strains were finite ones but that these strains existed in the half-plane only.
Throughout the paper, repeated indices indicate a summation over their ranges. However, underlined repeated indices
are not to be taken as sums.

2. Formulation of the problem

A bi-layered slab resting on a rigid foundation is considered herein (Fig. 1). Assume that in the natural state the
thickness of the upper and lower layers of the slab are H(2) and H(1), respectively. In the natural state, we determine the
positions of the points of the layers by the Lagrangian coordinates in the Cartesian system of coordinates Ox1x2x3. Suppose
that the layers of the slab have infinite length in the directions of the Ox1 and Ox3 axes. The Ox3 axis extends along a
direction perpendicular to the plane Ox1x2 in Fig. 1 and therefore is not shown in this figure.

We propose that the layers, before being compounded with each other and with a rigid foundation, be stretched
separately along the Ox1 axis direction and that in each of them, the homogeneous initial finite strain state appear. These
initial strains are caused by the static forces acting in the Ox1 axis direction at infinity. Note that the action of the forces
continues all further dynamic processes.

With the initial state of the layers of the slab we associate the Lagrangian Cartesian system of coordinates Oy1y2y3 and it
is supposed that the origin of this system coincides with the origin of the system Ox1x2x3, and the coordinate axes Oy1, Oy2

and Oy3 coincide with the coordinate axes Ox1, Ox2 and Ox3, respectively. Assuming that the material of the layers is
compressible, the elasticity relations are given through the harmonic potential. Moreover, it is assumed that the values
related to the upper and lower layers of the slab are denoted by upper indices (2) and (1), respectively. Furthermore, the
values related to the initial state are denoted by the upper index 0. To simplify further discussions, a local system of

coordinates OðmÞx
ðmÞ
1 x

ðmÞ
2 x

ðmÞ
3 (in the natural state) and OðmÞy

ðmÞ
1 y

ðmÞ
2 y

ðmÞ
3 (in the initial state) has been associated with the

middle plane of the m-th layer. The system of coordinates OðmÞx
ðmÞ
1 x

ðmÞ
2 x

ðmÞ
3 (OðmÞy

ðmÞ
1 y

ðmÞ
2 y

ðmÞ
3 ) is attained from the system of

coordinates Ox1x2x3ðOy1y2y3Þ by parallel transfer along the Ox2 (Oy2) axis.
Thus, according to the foregoing, the initial state in the layers can be determined as follows:

u
ðmÞ;0
i

¼ ðlðmÞ
i
� 1Þx

ðmÞ
i
; lðmÞ

i
¼ constim; y

ðmÞ
i
¼ lðmÞ

i
x
ðmÞ
i

, (1)

where u
ðmÞ;0
i

is a component of the displacement vector in the m-th layer in the initial strain state and lðmÞ
i

is an elongation

factor which characterizes the change in the length of the line element in the Oxi axis direction. This parameter is

determined by the expression lðmÞ
i
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�ðmÞ

i

q
, where �ðmÞ

i
is an i-th principal value of the Green’s strain tensor of the m-

th layer. The expression of the components of this tensor through the components of the displacement vector will be given
below.

Within this, let us investigate the mechanical behavior of the considered slab in the case where on the free face plane of
the upper layer, the line-located normal time-harmonic moving force acts. This investigation will be made by the use of
coordinates associated with the initial state, i.e. by the use of coordinates yðmÞ

i
, in the framework of the TLTEWISB.

In the construction of the field equations of the TLTEWISB, one considers two states of a deformable solid. The first is
regarded as the initial or unperturbed state and the second is a perturbed state with respect to the unperturbed one. By the
‘‘state of a deformable solid’’ both motion and equilibrium (as a particular case of motion) is meant. It is assumed that all
values in a perturbed state can be represented as a sum of the values in the initial state and the perturbations. The latter is
also assumed to be small in comparison with the corresponding values in the initial state. It is also assumed that both
initial (unperturbed) and perturbed states are described by the equations of nonlinear solid mechanics. Owing to the fact
that the perturbations are small, the relationships for the perturbed state in the vicinity of appropriate values for the
unperturbed state are linearized, and then the relations for the perturbed state are subtracted from them. The result is the
Fig. 1. The geometry of a bi-layered slab resting on a rigid foundation.
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equations of the TLTEWISB. The general problems of the TLTEWISB have been elaborated in many investigations such as
Refs. [14–19] and others. In the present paper, we will follow the style and notation used in monograph [19].

Thus, the following are the basic relations of the TLTEWISB for the compressible body under the plane-strain
state in the Oy1y2 plane. These relations are satisfied within each layer because we use the piecewise homogeneous body
model.

The equation of motion is

qQ
ðmÞ
ij

qy
ðmÞ
j

¼ rðmÞ
q2u
0ðmÞ
i

qt2
, (2)

and the mechanical relations are

Q
ðmÞ
ij
¼ oðmÞ

ijab
qu
0ðmÞ
a

qy
ðmÞ
b

, (3)

where

oðmÞ1111 ¼
lðmÞ1

lðmÞ2

ðlðmÞ þ 2mðmÞÞ; oðmÞ2222 ¼
lðmÞ2

lðmÞ1

ðlðmÞ þ 2mðmÞÞ; m ¼ 1;2,

oðmÞ1122 ¼ oðmÞ2211 ¼ lðmÞ; oðmÞ1212 ¼ oðmÞ2121 ¼
2lðmÞ2 mðmÞ

lðmÞ1 þ lðmÞ2

; oðmÞ1221 ¼ oðmÞ2112 ¼
2ðlðmÞ2 Þ

2mðmÞ

lðmÞ2 ðl
ðmÞ
1 þ lðmÞ2 Þ

. (4)

In Eqs. (3) and (4) the following notation is used: Q ðmÞ
ij

are the perturbations of the components of the Kirchhoff stress

tensor in the m-th layer related to the areas of the initial state, u0ðmÞ
j

are the components of the perturbations of the

displacement vector, and r(m) and l(m), m(m) are the densities also related to the volume of the initial state and mechanical
constants of the m-th material.

Note that the constants oðmÞ
ijab in (3) and (4) are determined through the initial strain state (1) and through the elastic

potential. As has been noted above, in the present work the elasticity relations of the layers’ materials are determined by
harmonic potential. This potential is given as follows:

FðmÞ ¼ 1
2l
ðmÞ
ðs
ðmÞ
1 Þ

2 þ mðmÞsðmÞ2 , (5)

where

sðmÞ1 ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�ðmÞ1

q
� 1Þ þ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�ðmÞ2

q
� 1Þ þ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�ðmÞ3

q
� 1Þ,

sðmÞ2 ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�ðmÞ1

q
� 1Þ2 þ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�ðmÞ2

q
� 1Þ2 þ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�ðmÞ3

q
� 1Þ2. (6)

In (6) �ðmÞ
i
ði ¼ 1;2;3Þ are the principal values of the Green’s strain tensor.

Let us consider briefly the definition of the stress and strain tensors in the large elastic deformation theory which are

used in the present investigation. For this purpose we use the Lagrange coordinates xi ði ¼ 1;2;3Þ in the Cartesian system of

coordinates Ox1x2x3 and the position of the points after and before deformations we determine by the vectors r* and r
where r� ¼ rþ u. Here u ¼ uigi is a displacement vector expressed by the unit basic vectors gi. Taking the relations

dr� � dr� ¼ dr � drþ 2 dr � duþ du � du (here the symbol ‘‘ � ’’ means the scalar product of the vectors), du � du ¼ ðquk=qxiÞ

ðquk=qxjÞdxi dxj and 2 dr � du ¼ 2ðquk=qxiÞdxk dxi into account, it can be written that dr� � dr� � dr � dr ¼ 2�ij dxi dxj, where

�ij ¼
1

2

qui

qxj
þ
quj

qxi
þ
qun

qxj

qun

qxj

 !
. (7)

This is a component of the Green’s strain tensor ẽ which is symmetric.
Let us consider the definition of the Kirchhoff stress tensor. The use of various types of stress tensors in the large (finite)

elastic deformation theory is connected with the reference of the components of these tensors to the unit area of the
relevant surface elements in the deformed or un-deformed state, because, in contrast to the linear theory of elasticity, in
the finite elastic deformation theory the difference between the areas of the surface elements taken before and after
deformation must be accounted for in the derivation of the equation of motion and under satisfaction of the boundary
conditions. According to the aim of the present investigation, we here consider two types of stress tensors denoted by q̃ and
S̃ the components of which refer to the unit area of the relevant surface elements in the un-deformed state, but act on the
surface elements in the deformed state. The components Sij of the stress tensor S̃ are determined through the strain energy
potential F ¼ Fð�11; �22; . . . ; �33Þ, where �ij is a component of the Green’s strain tensor (7), by the use of the following
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expression:

Sij ¼
1

2

q
q�ij
þ

q
q�ji

 !
Fð�11; �22; . . . ; �33Þ. (8)

The components qij of the stress tensor q̃ are determined by the expression

qij ¼ dj
k
þ
quj

qxk

 !
Sik. (9)

Here dj
k

is the Kronecker symbol. The stress tensor q̃ with components determined by expressions (8) and (9) is called the
Kirchhoff stress tensor. According to expressions (7)–(9), the stress tensor S̃ is symmetric, but the Kirchhoff stress tensor q̃
is non-symmetric. Thus, with this we restrict ourselves to consideration of the definition of the stress and strain tensors in
the finite elastic deformation theory. These definitions are given without any restriction related to the association of the
selected coordinate systems to the natural or initial state. However, in using the coordinate system associated with the
initial deformed state, the initial strain state can be taken as an ‘‘un-deformed’’ state in the foregoing definitions.

Now we attempt to attain the Eqs. (3) and (4) by employing a linearization procedure. Throughout this procedure in
order to simplify the writing of the mathematical symbols, as in the foregoing Eqs. (7), (8) and (9) we will omit the upper
index (m). Nevertheless the results will be simultaneously used for each component of the system considered by supplying
them with the upper index (1) or (2). But in order to denote the displacements, strains and stresses regarding the initial
strain state as above we will use the upper index ‘‘0’’.

Thus, according to (1), (5)–(9), we attain that

S0
i i ¼ ½lðl1 þ l2 � 2Þ þ 2mðli � 1Þ�ðliÞ

�1; S0
12 ¼ 0. (10)

It follows from the statement of the problem that S0
22 ¼ 0, according to which, the following expression for l2 is attained:

l2 ¼ ½2m� lðl1 � 2Þ�ðlþ 2mÞ�1. (11)

In this way, for selected layer materials, the magnitude of the initial strains and the initial stresses in them can be
determined only through the parameter l1. In this case the perturbation of the components of the non-symmetric Kirchhoff
stress tensor qij (denoted by q0ij) related to the areas of the natural state are determined by the following expression:

q0ij ¼ dj
k
þ
qui0

qxk

� �
S0ik þ S0

ik

qu0j
qxk

, (12)

where S0ik is a perturbation of the components of the foregoing symmetric stress tensor S̃.
By the linearization of Eq. (8), the following relation is obtained for these components:

S0in ¼
1

4
db

k
þ
qu0

b
qxk

0
@

1
A q

q�0
kb
þ

q
q�0

bk

0
@

1
A q

q�0
in

þ
q

q�0
ni

 !
F0

8<
:

9=
; qu0a
qxb

. (13)

Using the relations

Q11 dy2 dy3 ¼ q011 dx2 dx2; . . . ;Q21 dy1 dy3 ¼ q021 dx1 dx3; dyi ¼ li dxi; l3 ¼ 1:0

) Q11 ¼ q011=l2; . . . ;Q21 ¼ q021=l1. (14)

and changing qu0j=qxk and qu0a=qxb in Eqs. (12) and (13) with lkqu0j=qyk and lbqu0a=qyb, respectively, we attain Eqs. (3) and
(4) from Eqs. (12) and (13) after some mathematical manipulations. Next we consider the obtainment of the expressions for
Q11, o1111 and o1122 given in Eqs. (3) and (4). From Eqs. (1), (12) and (13) it can be easily attained that

q011 ¼ l1S011 þ S0
11

qu01
qx1

; S011 ¼ l1
q

q�0
11

S0
11

qu01
qx1
þ l2

q
q�0

22

S0
11

qu02
qx2

. (15)

Taking the relations

l1
q

q�0
11

S0
11 ¼

l1

l1

qS0
11

ql1
¼

1

l1
ðlþ 2mÞ � 1

ðl1Þ
2

S0
11; l2

q
q�0

22

S0
11 ¼

l2

l2

qS0
11

ql2
¼

1

l1
l, (16)

which are obtained from the definition of the parameter li and the expression for S0
11 in Eq. (10), and the relations (15) into

account, the following mathematical transformations can be made:

q011 ¼ ðlþ 2mÞ
qu01
qx1
þ l

qu02
qx2
¼ l1ðlþ 2mÞ

qu01
qy1
þ l2l

qu02
qy2

,
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Q11 ¼ q011=l2 ¼
l1

l2
ðlþ 2mÞ

qu01
qy1
þ l

qu02
qy2
¼ o1111

qu01
qy1
þo1122

qu02
qy2

,

) o1111 ¼
l1

l2
ðlþ 2mÞ; o1122 ¼ l. (17)

By supplying the foregoing expressions for o1111 and o1122 in (17) with the upper index ðmÞ we attain the expressions for
oðmÞ1111 and, oðmÞ1122, respectively, given in Eq. (4). In a similar manner we can obtain the expressions of the remaining
components oðmÞ

ijab which enter Eqs. (3) and (4). Thus with this we restrict ourselves to consideration of the basic equations
and relations within the scope of which the present investigation is carried out.

Consider the contact and boundary conditions. The considered system is excited by a line-located time-harmonic
oscillating moving load on the upper layer; therefore the following conditions must be satisfied:

Q ð2Þ21 jyð2Þ
2
¼lð2Þ

2
Hð2Þ=2

¼ 0; Q ð2Þ22 jyð2Þ
2
¼lð2Þ

2
Hð2Þ=2

¼ �P0eiotdðy1 � VtÞ, (18)

fu0ð2Þ
i
;Q ð2Þ

2i
gj

yð2Þ
2
¼�lð2Þ

2
Hð2Þ=2

¼ fu0ð1Þ
i
;Q ð1Þ

2i
gj

yð1Þ
2
¼þlð1Þ

2
Hð1Þ=2

; u0ð1Þ
i
j
yð1Þ

2
¼�lð1Þ

2
Hð1Þ=2

¼ 0. (19)

In (18) V and o denote the velocity and frequency of the moving load with amplitude P0.
This completes the formulation of the problem. It should be noted that in the case where lðmÞ

i
¼ 1:0 ði ¼ 1;2; m ¼ 1;2Þ

the formulation described above transforms into the corresponding one within the scope of the classical linear theory of
elastodynamics.
3. Method of solution

Below we will only deal with perturbation u0ðmÞ
i

and Q ðmÞ
ik

, and will omit the upper prime in notation u0ðmÞ
i

, i.e. instead of
the notation u0ðmÞ

i
we will use the notation uðmÞ

i
.

By using the coordinate system

y01 ¼ y0ð1Þ1 ¼ y0ð2Þ1 ¼ y1 � Vt; y0ðmÞ2 ¼ yðmÞ2 , (20)

which moves with the loading force and represents the sought values as

gðy0ðmÞ1 ; y0ðmÞ2 ; tÞ ¼ ḡðy0ðmÞ1 ; y0ðmÞ2 Þeiot (21)

from Eqs. (2)–(4), the following equations of motion in terms of displacement are obtained:

o0ðmÞ
kjab

q2u
ðmÞ
a

qy
ðmÞ
k

qy
ðmÞ
b

¼
1

ðc
ðmÞ
2 Þ

2
V2

q2u
ðmÞ
j

qðyðmÞ1 Þ
2
� 2ioV

qu
ðmÞ
j

qy
ðmÞ
1

�o2
q2u
ðmÞ
j

qðyðmÞ2 Þ
2

0
@

1
A; j ¼ 1;2; i ¼

ffiffiffiffiffiffiffi
�1
p

, (22)

where

o0ðmÞ
kjab ¼

oðmÞ
kjab
mðmÞ

; c
ðmÞ
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
mðmÞ

rðmÞ
:

s
(23)

In Eq. (22), the upper prime in y1 and y2, and over bar in uðmÞ1 and uðmÞ2 are omitted. In this case, the second boundary
condition (18) is replaced by the following:

Q ð2Þ22

���
yð2Þ

2
¼lð2Þ

2
Hð2Þ=2

¼ �P0dðy1Þ. (24)

Thus, the other conditions in (18) and (19) are also valid for the new coordinate system (20) and for the amplitude of the
sought values.

Consider the solutions to Eq. (22). For this purpose we employ the exponential Fourier transformation with respect to
the y1coordinate defined as

f F ðs; y2Þ ¼

Z þ1
�1

f ðy1; y2Þe
�isy1 dy1 (25)

in Eq. (22) and given the corresponding boundary and contact conditions. As a result of this transformation the following
equations with respect to u

ðmÞ
1F ðs; y

ðmÞ
2 Þ and u

ðmÞ
2F ðs; y

ðmÞ
2 Þ are attained from (22):

ð�cðmÞ � s̄2o0ðmÞ1111Þu
ðmÞ
1F þo

0ðmÞ
2112

d2u
ðmÞ
1F

dðȳ
ðmÞ
2 Þ

2
þ ðo0ðmÞ1122 þo

0ðmÞ
2121Þis̄

du
ðmÞ
2F

dȳ
ðmÞ
2

¼ 0,
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ð�cðmÞ � s̄2o0ðmÞ1221Þu
ðmÞ
2F þo

0ðmÞ
2222

d2u
ðmÞ
2F

dðȳ
ðmÞ
2 Þ

2
þ ðo0ðmÞ1212 þo

0ðmÞ
2211Þis̄

du
ðmÞ
1F

dȳ
ðmÞ
2

¼ 0, (26)

where

cðmÞ ¼
ðcð2Þ2 Þ

2

ðcðmÞ2 Þ
2
ð�s̄2c2 þ 2Ocs̄�O2

Þ; c ¼
V

cð2Þ2

; O ¼
oHð2Þ

cð2Þ2

; s̄ ¼ sHð2Þ. (27)

From the second equation in (26), it can be written that

du
ðmÞ
1f

dȳ
ðmÞ
2

¼ i aðmÞu
ðmÞ
2F þ bðmÞ

d2u
ðmÞ
2F

dðȳ
ðmÞ
2 Þ

2

0
@

1
A; d3u

ðmÞ
1f

dðȳ
ðmÞ
2 Þ

3
¼ i aðmÞ

d2u
ðmÞ
2F

dðȳ
ðmÞ
2 Þ

2
þ bðmÞ

d4u
ðmÞ
2F

dðȳ
ðmÞ
2 Þ

4

0
@

1
A. (28)

Similarly it can also be written from the first equation in (26) that

ð�cðmÞ � s̄2o0ðmÞ1111Þ
du
ðmÞ
1F

dȳ
ðmÞ
2

þo0ðmÞ2112

d3u
ðmÞ
1F

dðȳ
ðmÞ
2 Þ

3
þ ðo0ðmÞ1122 þo

0ðmÞ
2121Þis̄

d4u
ðmÞ
2F

dðȳ
ðmÞ
2 Þ

4
¼ 0. (29)

Substituting the expressions in Eq. (28) into Eq. (29), the equation

d4u
ðmÞ
2F

dðȳ
ðmÞ
2 Þ

4
þ a
ðmÞ
1

d2u
ðmÞ
2F

dðȳ
ðmÞ
2 Þ

2
þ b
ðmÞ
1 u

ðmÞ
2F ¼ 0, (30)

is obtained, where

aðmÞ ¼
�ðcðmÞ þ s̄2o0ðmÞ1221Þ

s̄ðo0ðmÞ1212 þo
0ðmÞ
2211Þ

; bðmÞ ¼
o0ðmÞ2222

s̄ðo0ðmÞ1212 þo
0ðmÞ
2211Þ

,

a
ðmÞ
1 ¼ ½bðmÞð�cðmÞ � s̄2o0ðmÞ1111Þ þ aðmÞo0ðmÞ2112 þ s̄ðo0ðmÞ1122 þo

0ðmÞ
2121Þ�ðo

0ðmÞ
2112bðmÞÞ�1,

b
ðmÞ
1 ¼ aðmÞð�cðmÞ � s̄o0ðmÞ1111Þðo

0ðmÞ
2112bðmÞÞ�1. (31)

Thus, we find the solution to Eq. (30) as follows:

u
ðmÞ
2F ¼ AðmÞ1 ðsÞe

K
ðmÞ
1

ȳ
ðmÞ
2 þ AðmÞ2 ðsÞe

�K
ðmÞ
1

ȳ
ðmÞ
2 þ AðmÞ3 ðsÞe

K
ðmÞ
2

ȳ
ðmÞ
2 þ AðmÞ4 ðsÞe

�K
ðmÞ
2

ȳ
ðmÞ
2 , (32)

where

K
ðmÞ
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

a
ðmÞ
1

2
þ d
ðmÞ
1

s
; K

ðmÞ
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

a
ðmÞ
1

2
� d
ðmÞ
1

s
; d

ðmÞ
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða
ðmÞ
1 Þ

2

4
� b
ðmÞ
1

s
. (33)

As the subsonic case is considered, therefore it is assumed that the conditions

min
V

cð1Þ2

;
V

cð2Þ2

8<
:

9=
;ominfo0ð1Þ

ijab;o
0ð2Þ
ijabg (34)

satisfy each combination of the indices ijab. According to (34), it follows from (31) and (32) that in the case where O ¼ 0

the values of KðmÞ1 and KðmÞ2 in (33) are real values and KðmÞ1 40, KðmÞ2 40. But in the case where O40, the values of KðmÞ1 and

KðmÞ2 can also be complex (most probably pure imaginary) numbers. Note that these statements have been taken into

account in developing the calculation algorithm and in constructing the corresponding PC programs.
Thus, from (32), (28), (3) and (4) we have completely determined the Fourier transformation of all values. The

corresponding closed system of algebraic equations is obtained from boundary conditions (18), (24) and contact conditions

(19) for determination of the unknowns Að1Þ1 ðsÞ; . . . ;A
ð1Þ
4 ðsÞ, Að2Þ1 ðsÞ; . . . ;A

ð2Þ
4 ðsÞ which enter into these transformations. From

the algebraic equations we find the aforementioned unknowns and, by employing the inverse transform

f ðy1; y2Þ ¼
1

2p

Z þ1
�1

f F ðs; y2Þe
isy1 ds. (35)

We determine the sought stresses and displacements.
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4. General remarks on the Doppler effect and on the algorithm used for obtaining numerical results

In the case where O ¼ 0 (as in Refs. [7,8]) or in the case where c ¼ 0 (as in Refs. [22,25]) the integral (35) can be reduced

to the calculation of either of the integrals 1=p
Rþ1
�1 f F ðs; y2Þ cosðsy1Þds (for uðmÞ2 ;Q ðmÞ22 ;Q

ðmÞ
11 ; �

ðmÞ
22 ; �

ðmÞ
11 ) or

1=p
Rþ1
�1 f F ðs; y2Þ sinðsy1Þds (for uðmÞ1 ;Q ðmÞ21 ;Q

ðmÞ
12 ; �

ðmÞ
12 ). However, in the case where O� ca0, this reduction is violated by

the term 2Ocs̄ which enters the expression of cðmÞ in (27). Consequently, given the calculation of integral (35) we must use
the relation

1

2p

Z þ1
�1

ð�Þeisy1 ds �
1

2p

Z þS�

�S�
ð�Þ cosðsy1Þdsþ

i

2p

Z þS�

�S�
ð�Þ sinðsy1Þds. (36)

The values of S* in (36) are determined from the corresponding numerical convergence criterion. At the same time, we
use the following notation:

Q ðmÞ
ijc
�

1

2p

Z þS�

�S�
Q ðmÞ

ijF
cosðsy1Þds; Q ðmÞ

ijs
�

1

2p

Z þS�

�S�
Q ðmÞ

ijF
sinðsy1Þds,

uðmÞ
ic
�

1

2p

Z þS�

�S�
uðmÞ

iF
cosðsy1Þds; uðmÞ

is
�

1

2p

Z þS�

�S�
uðmÞ

iF
sinðsy1Þds,

fQ̃
ðmÞ
22 ; Q̃

ðmÞ
11 ; ũ

ðmÞ
2 g ¼ fjQ̃

ðmÞ
22 je

iaðmÞ
22 ; jQ̃

ðmÞ
11 je

iaðmÞ
11 ; jũ

ðmÞ
2 je

iaðmÞ
2 g,

fQ̃
ðmÞ
21 ; Q̃

ðmÞ
12 ; ũ

ðmÞ
1 g ¼ fijQ̃

ðmÞ
21 je

iaðmÞ
21 ; ijQ̃

ðmÞ
12 je

iaðmÞ
12 ; ijũ

ðmÞ
1 je

iaðmÞ
1 g, (37)

where

jQ̃
ðmÞ
ij j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ ðmÞ

ijc
Þ2 þ ðQ ðmÞ

ijs
Þ2

r
; jũðmÞ

i
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuðmÞ

ic
Þ2 þ ðuðmÞ

is
Þ2

q
,

tan aðmÞ
ij
¼

Q
ðmÞ
ijs

Q
ðmÞ
ijc

; tan aðmÞ
i
¼

u
ðmÞ
is

u
ðmÞ
ic

. (38)

After the foregoing mathematical preparation, the true (real) values of the sought quantities are determined by the
expression

fQ ðmÞ
ij
;uðmÞ

i
g ¼ ReðfQ̃

ðmÞ
ij ; ũðmÞ

i
eiotgÞ, (39)

according to which,

Q
ðmÞ
22 ¼ jQ̃

ðmÞ
22 j cosðaðmÞ22 þotÞ; Q

ðmÞ
11 ¼ jQ̃

ðmÞ
11 j cosðaðmÞ11 þotÞ,

Q
ðmÞ
21 ¼ �jQ̃

ðmÞ
21 j sinðaðmÞ21 þotÞ; Q

ðmÞ
12 ¼ �jQ̃

ðmÞ
12 j sinðaðmÞ12 þotÞ,

u
ðmÞ
2 ¼ jũ

ðmÞ
2 j cosðaðmÞ2 þotÞ; u

ðmÞ
1 ¼ �jũ

ðmÞ
1 j sinðaðmÞ1 þotÞ. (40)

It follows from expressions (38) and (40) that the functions aðmÞ
ij
ðy1; y

ðmÞ
2 Þ and aðmÞ

i
ðy1; y

ðmÞ
2 Þ are odd functions with respect

to y1. At the same time, by direct calculation, it is proven that

aðmÞ
ij
ðy1; y

ðmÞ
2 Þo0; aðmÞ

i
ðy1; y

ðmÞ
2 Þo0 for y140,

aðmÞ
ij
ðy1; y

ðmÞ
2 Þ40; aðmÞ

i
ðy1; y

ðmÞ
2 Þ40 for y1o0. (41)

For fixed yðmÞ2 ð¼ yðmÞ�2 Þ we can write

aðmÞ
ij
ðy1; y

ðmÞ
2 Þ ¼

qaðmÞ
ij

qy1

������
y1¼0

y1 þ ã
ðmÞ
ij
ðy1; y

ðmÞ
2 Þ,

aðmÞ
i
ðy1; y

ðmÞ
2 Þ ¼

qaðmÞ
i

qy1

�����
y1¼0

y1 þ ã
ðmÞ
i
ðy1; y

ðmÞ
2 Þ. (42)
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It follows from (41) and from the foregoing discussions that

kðmÞ
ij
¼
qaðmÞ

ij

qy1

������
y1¼0

o0; kðmÞ
i
¼
qaðmÞ

i

qy1

�����
y1¼0

o0. (43)

According to Eqs. (38), (41)–(43), the expressions given in (40) can be presented through multiplication of two terms, one

of which is e
iðkðmÞ

ij
y1þotÞ

or eiðkðmÞ
i

y1þotÞ. This is similar to the expressions corresponding to the wave propagation along the
Oy1 axis. It should be noted that this ‘‘wave propagation’’ is considered in a moving frame of reference. In this case, as it

moves, propagating a wave with angular frequency o and wave-number kðmÞ
ij

, the observation point oscillates with angular

frequency o in a moving frame of reference. However, in a fixed frame of reference, according to the foregoing discussions

and expressions, it oscillates with angular frequency ō ¼ o� kðmÞ
ij

V. This follows from the relationship

eiote
iaðmÞ

ij ¼ eiote
iðkðmÞ

ij
y1þã

ðmÞ
ij
Þ
¼ eiote

iðkðmÞ
ij

y01�Vtð ÞþãðmÞij
Þ
¼ e

iðo�kðmÞ
ij

VÞt
e

iðkðmÞ
ij

y0
1
þãðmÞ

ij
Þ
) ō ¼ o� kðmÞ

ij
V .

Hence, according to the expressions and inequalities (41)–(43), for a fixed frame of reference, the oscillation frequency ō
of the observation point determined by coordinates y140 ðy1o0Þ increases (decreases).

This statement is known physically as the Doppler effect. Consequently, the foregoing discussions and results agree with
the well-known results of acoustic-physics and prove the validity of the mathematical modeling used for the problem
considered.

With this we restrict here the discussions regarding the Doppler effect. More detailed analysis of this effect for the
problem considered can be the subject of other separate investigations.

Consider the description of the algorithm regarding the calculation of the integrals in expression (35). Numerical

investigations show that, in general, within fixed values of the problem parameters for each value of V the quantities uðmÞ
iF

,

Q ðmÞ
ijF

have singular points with respect to sHð2Þ. The following is a consideration of the determination of these singular

points.
According to the procedure for determination of the unknowns Að1Þ1 ðsÞ; . . . ;A

ð1Þ
4 ðsÞ, Að2Þ1 ðsÞ; . . . ;A

ð2Þ
ðsÞ (see, Refs. [22,25]),

the aforementioned singular points coincide with the roots of the equation

det kanmðVðsHð2ÞÞÞk ¼ 0; n;m ¼ 1;2; . . . ;6 (44)

in VðsHð2ÞÞ, where anmðVðsHð2ÞÞÞ are the coefficients of the unknowns in the algebraic equation system.
Consequently, the order of the singularity (denoted by r) of integrated values coincides with the order of the roots of Eq.

(44). It is known that in the case where 0 	 ro1 the integrals in (35) can be calculated by the use of normal well-known
algorithms. In the case where r ¼ 1, the calculation of integrals (35) and (36) are performed according to Cauchy’s principal
value. But in the case where r41 the integrals do not have any meaning and the velocity corresponding to this case is called
the ‘‘critical velocity’’ at which a resonance type of phenomenon takes place. In this case the values of all parameters of the
problem are fixed (except the load-moving velocity V) and for the given value of sHð2Þ, the velocity V is determined from
Eq. (44) as the root of this equation. In this way, the dependence between V and sHð2Þ is obtained, and the critical velocity
corresponds to the case where dV=dðsHð2ÞÞ ¼ 0.

One of the main questions of moving load problems for layered materials in a subsonic state (34) is the determination of
this critical velocity (denoted by Vcr:), and the influence of the problem parameters (one of which is an oscillating
frequency) of these moving load problems is the determination of the stress–strain state in the mechanical system wherein
VoVcr:. In this case, integrals (35) and (36) are calculated with the algorithm developed in Refs. [22,23].

We attempt at this point to analyze an equivalency for the definition of the critical velocity used in the present paper
and in papers [10,11]. As has been noted in Section 1, in paper [10] the critical velocity is defined as the velocity for which
the phase and group velocities are equal to each other. Note that the definition of the critical velocity used in the present
paper coincides with that proposed in [10]. This conclusion can be proven as follows (below instead of the notation V and s

we will use the notation c and k, respectively, where c is a phase velocity and k is a wave number):

dc=dðkHð2ÞÞ ¼ dðo=kÞ=dðkHð2ÞÞ ¼ dðoHð2Þ=ðkHð2ÞÞÞ=dðkHð2ÞÞ

¼ 1=ðkHð2ÞÞðdo=dkÞ � 1=ðkHð2ÞÞ2ðo=kÞ ¼ 0) cg ¼ do=dk ¼ o=k ¼ cp.

Consequently, as in the case where O ¼ 0, the physical meaning of the critical velocity is defined by the equation
dV=dðsHð2ÞÞ ¼ 0 (because under O ¼ 0 Eq. (44) coincides with the dispersion equation of the system considered) which is
equivalent to that proposed in paper [10]. At the same time, in paper [11] the critical velocity is defined as a minimal phase
velocity after which wave propagation starts to occur in the system analyzed. The determination dV=dðsHð2ÞÞ ¼ 0 of the
critical velocity under O ¼ 0 also confirms that proposed in Ref. [11], if the velocity satisfying the equation dV=dðsHð2ÞÞ ¼ 0
is a minimal velocity. It is obvious that sometimes the velocity satisfying this equation may be also a maximal phase
velocity. Therefore, in the authors’ opinion, the definition and the physical meaning of the critical velocity based on the
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equality of the phase and group velocities is a more generalized one than the one based on the minimal phase velocity and
also confirms the critical velocity used in the present paper, as well as in papers [2–6].

As has been mentioned above, the foregoing discussions concerning the critical velocity are for the case where O ¼ 0.
However, in the case where O40, in papers [10,11] the critical velocity is determined from the set of equations consisting of
the dispersion equation plus the equation o ¼ kV7O (the equation of the kinematic invariant) as well as the equation

do=dk ¼ V (i.e. the condition for the equality of the group velocity of radiated waves and the load velocity), and in this way
two critical velocities are determined for each fixed O. In the present paper these critical velocities are also determined

from the equation dV=dðsHð2ÞÞ ¼ 0 one of which corresponds to the values sHð2Þo0, but the other one to the values sHð2Þ40.

It should be noted that in the case where O40 the curves V ¼ VðsHð2ÞÞ determined from Eq. (44) do not coincide with the

dispersion curves. Nevertheless, the expression cðmÞ in Eq. (27) shows that the curves V ¼ VðsHð2ÞÞ plotted for the values

sHð2Þ40ðsHð2Þo0Þ can be considered as the ‘‘dispersion curves’’ for the phase velocity determined by the expression

V ¼ ðo�OÞ=kðV ¼ ðoþOÞ=kÞ. It follows from this statement that the definition of the critical velocity used in the present
paper for the case where O40 is equivalent to that used in papers [10,11]. The numerical examples for the foregoing
discussions will be considered in the following section.

Thus we come to consider the numerical results obtained within the framework of the solution method discussed above
and related to the influence of the oscillation frequency of the moving load, of the initial strain in the layers of the slab, and
their mechanical properties on the values of the critical velocity and on the values of the stresses acting on the interface
plane between the layers.

5. Numerical results and discussion

Assume that lð1Þ=mð1Þ ¼ lð2Þ=mð2Þ ¼ 1:5; all numerical investigations for this case have been made. For an illustration of
the trustworthiness of the algorithm and PC programs used, first, we consider the case where O ¼ 0 which was also

considered in Refs. [3,7,8] under mð2Þ=mð1Þ ¼ 2:0, lð2Þ1 ¼ lð1Þ1 ¼ 1:0, rð1Þ=rð2Þ ¼ 0:5. The influence of Hð1Þ=Hð2Þ on the values of

the critical velocity ccr:ð¼ Vcr:=cð2Þ2 Þ is investigated. According to the well-known mechanical considerations, for the sub-

sonic velocities of the moving load the values of ccr: must approach the corresponding results obtained in Refs. [3,7,8] with

Hð1Þ=Hð2Þ. These numerical results are given in Table 1, and agree with the foregoing considerations and prove the
trustworthiness of the numerical algorithm and PC programs used.

Analyses of the multiple numerical results show that the critical velocity of the moving load occurs in cases where

mð2Þ=mð1Þ41. At the same time, the existence of the critical velocity depends also on the values of rð2Þ=rð1Þ and on the values

of Hð2Þ=Hð1Þ. This statement is illustrated by the data given in Table 2. In this table the sign ‘‘-’’ means that in the

corresponding case the critical velocity does not exist. Moreover, it follows from Table 2 that the values of ccr:ð¼ Vcr:=cð2Þ2 Þ

decrease with mð2Þ=mð1Þ.
The foregoing results agree with the corresponding ones attained in Refs. [2,3]. An explanation of why the critical

velocity occurs when mð2Þ=mð1Þ41 can be made by analyzing the nature of the dispersion relations of the wave propagation

in the system considered. Under mð2Þ=mð1Þ41 these relations, i.e. the relations between c=cð2Þ2 and kHð2Þ (k is a wave number)

have a local minimum. But in the case where mð2Þ=mð1Þo1, these relations do not have a local minimum.
Consider the case where O� ca0. It should be noted that in the case where O� c ¼ 0, taking the symmetry of the

det kanmðcðsHð2ÞÞÞk with respect to sHð2Þ ¼ 0:0 into account for analysis of the dependence c ¼ cðsHð2ÞÞ is sufficient for the

consideration of this dependence in the interval 0 	 sHð2Þ 	 þ1 only. But, in the case where O� ca0, according to the

term Ocs̄ in the expression cðmÞ in (27), this symmetry is violated. Therefore, in the case where O� ca0 the analyses of the

dependence c ¼ cðsHð2ÞÞ must be done in the interval �1 	 sHð2Þ 	 þ1. For illustration of the foregoing statement we

consider the graphs of the dependence given in Fig. 2. These graphs are constructed under mð2Þ=mð1Þ ¼ 5:0, rð2Þ=rð1Þ ¼ 1=6,

lð2Þ1 ¼ lð2Þ1 ¼ 1:0 for various values of O. It follows from this figure that the graphs constructed in the case where O ¼ 0 are

symmetric with respect to the straight line determined by the equation sHð2Þ ¼ 0: However, as has been noted above, this
symmetry is violated for the graphs constructed under O40: The analyses of the numerical results show that up to certain
Table 1

The values of ccr:ð¼ Vcr:=cð2Þ2 Þ for various values of H(1)/H(2) under m(2)/m(1)
¼ 2.0, lð2Þ1 ¼ lð1Þ1 ¼ 1:0; rð1Þ=rð2Þ ¼ 0:5.

H(1)/H(2)

0.5 1.0 1.5 2.0 4.0 6.0 N

0.9084 0.8812 0.8651 0.8556 0.8431 0.8415 0:8415 ½7;8�

0:8370 ½3�
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Fig. 2. The graphs of the dependencies between c and sHð2Þ for determination of the values of c0cr: and c00cr: for various values of O under Hð1Þ=Hð2Þ ¼ 0:5,

lð2Þ1 ¼ lð1Þ1 ¼ 1:0, mð2Þ=mð1Þ ¼ 5:0, rð1Þ=rð2Þ ¼ 1:=6.

Table 2

The influence of the parameters m(2)/m(1), r(1)/r(2), H(1)/H(2) on the values of ccr:ð¼ Vcr:=cð2Þ2 Þ under lð2Þ1 ¼ lð1Þ1 ¼ 1:0.

m(2)/m(1) r(2)/r(1) H(1)/H(2)

0.5 2.0 5.0 7.0

2 0.5 cð2Þ2 ¼ cð1Þ2
0.9098 0.8556 0.8419 0.8414

2.0 cð2Þ2 4cð1Þ2
– – – –

0.25 cð2Þ2 ocð1Þ2
0.9160 0.8906 0.8891 0.8891

3 1./3. cð2Þ2 ¼ cð1Þ2
0.8777 0.7953 0.7760 0.7753

0.5 cð2Þ2 4cð1Þ2
– 0.7663 0.7307 0.7264

0.25 cð2Þ2 ocð1Þ2
0.8818 0.8096 0.7970 0.7968

5 0.2 cð2Þ2 ¼ cð1Þ2
0.8266 0.7142 0.6871 0.6859

0.25 cð2Þ2 4cð1Þ2
0.8235 0.7049 0.6728 0.6707

1./6. cð2Þ2 ocð1Þ2
0.8287 0.7201 0.6965 0.6957
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O (denoted by O0) the values of the ‘‘minimum’’ critical velocity (denoted by c0cr:) are determined by the left branches, i.e. by

those branches attained in the region sHð2Þo0: The following values (by magnitude) of the critical velocity (denoted by c00cr:)

are determined by the right branches, i.e. by the branches obtained in the region sHð2Þ40: In this case the values of c0cr:ðc
00
cr:Þ

decrease (increase) with O. Consequently, up to a certain value of the oscillation frequency (i.e. up to O ¼ O0) of the moving

load, as a result of the oscillation of this load, the critical velocity decreases. However, in the case where O4O0 the left
branches of the graphs do not determine the critical velocity; in other words, on these branches, the point for which the

equation dc=dðsHð2ÞÞ ¼ 0 satisfies, as critical velocity does not occur, but the right branches of the graphs do determine the

values of ccr:for the case where O4O0. This procedure continues up to a certain value of O (denoted by O00) after which the

value of c00cr: goes outside of the framework of the subsonic moving regime. It should be noted that the numerical results

shown in Fig. 2 in the qualitative sense agree with the corresponding results obtained in Refs. [10,11].

The influence of the problem parameters lð2Þ1 and lð1Þ1 which characterize the magnitude of the initial strains in the layers

of the slab is analyzed, and the influence of the parameter Hð1Þ=Hð2Þ on the values of c0cr: attained for the various values of O.
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Table 4

The influence of the parameters lð2Þ1 ; lð1Þ1 on the values of c0cr: for various values of H(1)/H(2) in the case where O ¼ 0.1.

lð2Þ1 =lð1Þ1
H(1)/H(2)

0.5 2.0 5.0

1.0/1.0 0.7800 0.6270 0.5603

1.02/1.0 0.8204 0.6793 0.6121

1.05/1.0 0.8772 0.7501 0.6805

1.07/1.0 0.9130 0.7932 0.7213

1.0/1.02 0.7794 0.6278 0.5639

1.0/1.05 0.7786 0.6128 0.5190

1.0/1.07 0.7950 0.6158 0.5285

1.0/1.10 0.7953 0.6203 0.5420

1.0/1.15 0.7963 0.6276 0.5625

1.0/1.20 0.7976 0.6348 0.5804

Table 5

The influence of the parameters lð2Þ1 ; lð1Þ1 on the values of c0cr: for various values of H(1)/H(2) in the case where O ¼ 0.2.

lð2Þ1 =lð1Þ1
H(1)/H(2)

0.5 2.0 5.0

1.0/1.0 0.7293 0.5268 0.3729

1.02/1.0 0.7709 0.5800 0.4188

1.05/1.0 0.8294 0.6521 0.4796

1.07/1.0 0.8663 0.6960 0.5161

1.0/1.02 0.7285 0.5272 0.3763

1.0/1.05 0.7273 0.5095 0.3812

1.0/1.07 0.7353 0.5121 0.3165

1.0/1.10 0.7779 0.5161 0.3287

1.0/1.15 0.8444 0.5228 0.3479

1.0/1.20 0.9022 0.5295 0.3658

Table 3

The influence of the parameters lð2Þ1 ; lð1Þ1 on the values of c0cr: for various values of H(1)/H(2) in the case where O ¼ 0.0.

lð2Þ1 =lð1Þ1
H(1)/H(2)

0.5 2.0 5.0

1.0/1.0 0.8266 0.7142 0.6871

1.02/1.0 0.8657 0.7646 0.7393

1.05/1.0 0.9206 0.8326 0.8088

1.07/1.0 0.9551 0.8740 0.8505

1.0/1.02 0.8263 0.7152 0.6898

1.0/1.05 0.8259 0.7037 0.6771

1.0/1.07 0.8393 0.7068 0.6846

1.0/1.10 0.8399 0.7113 0.6937

1.0/1.15 0.8411 0.7184 0.7042

1.0/1.20 0.8427 0.7253 0.7113
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The corresponding results are given in Tables 3–5 for the case O ¼ 0.0, 0.1 and 0.2, respectively. In this case it is assumed

that mð2Þ=mð1Þ ¼ 5:0, rð1Þ=rð2Þ ¼ 1:=6: The corresponding conclusions following these results will be given in the following
section.

The numerical results regarding the distribution of the stresses Q ð2Þ22 and Q ð1Þ22 on the planes of the mid-layers are

examined with respect to y1=Hð2Þ. However, in this examination the following statements must be taken into account.
According to the discussions made in the previous section and the expressions (37) and (38), in the case where

O� c ¼ 0 the relations aðmÞ
ij
¼ 0, aðmÞ

i
¼ 0 occur. Consequently, in the case where O� c ¼ 0 the distribution of the stresses

Q ð2Þ22 and Q ð1Þ22 become symmetric with respect to y1=Hð2Þ ¼ 0. Moreover, in the case where O� c ¼ 0 the distribution of the
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Fig. 3. The influence of the moving load velocity c on the values of jQ̃
ð2Þ
22 j and jQ̃

ð1Þ
22 j (at y1=Hð2Þ ¼ 0:0) for various values of Hð1Þ=Hð2Þ in the case where

O ¼ 0:0, lð2Þ1 ¼ lð1Þ1 ¼ 1:0, rð1Þ=rð2Þ ¼ 0:2, mð2Þ=mð1Þ ¼ 5:0.

Fig. 4. The influence of the oscillating load frequency O on the values of jQ̃
ð2Þ
22 j and jQ̃

ð1Þ
22 j (at y1=Hð2Þ ¼ 0:0) under various values of Hð1Þ=Hð2Þ in the case

where c ¼ 0:0, lð2Þ1 ¼ lð1Þ1 ¼ 1:0, rð1Þ=rð2Þ ¼ 0:2, mð2Þ=mð1Þ ¼ 5:0.
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Q̃
ð2Þ
22 and Q̃

ð1Þ
22 , in the qualitative sense, also illustrate (simultaneously) the distribution of the Q ð2Þ22 and Q ð1Þ22 , respectively.

However, in the case where O� ca0 the functions aðmÞ
ij

and aðmÞ
i

appear and these functions are discontinuous with respect

to y1=Hð2Þ. This discontinuity is explained by the wave reflection from the planes of the mid-layers. Moreover, in the case

where O� ca0, the distribution of the Q ð2Þ22 and Q ð1Þ22 becomes non-symmetric with respect to the straight line for which

the equation is y1=Hð2Þ ¼ 0. Nevertheless, the distribution of the jQ̃
ð2Þ
22 j and jQ̃

ð1Þ
22 j remain symmetric with respect to the

straight line y1=Hð2Þ ¼ 0 for the case O� ca0.
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Fig. 5. The influence of the moving load velocity c on the distribution of jQ̃
ð2Þ
22 j (at yð2Þ2 ¼ �Hð2Þ2 ) and jQ̃

ð1Þ
22 j (at yð1Þ2 ¼ �Hð1Þ2 ) with respect to y1=Hð2Þ , for

Hð1Þ=Hð2Þ ¼ 0:5, O ¼ 0:0, lð2Þ1 ¼ lð1Þ1 ¼ 1:0, rð1Þ=rð2Þ ¼ 0:2, mð2Þ=mð1Þ ¼ 5:0.

Fig. 6. The influence of the oscillating load frequency O on the distribution of jQ̃
ð2Þ
22 j (at yð2Þ2 ¼ �Hð2Þ2 ), jQ̃

ð1Þ
22 j (at yð1Þ2 ¼ �Hð1Þ2 ) with respect to y1=Hð2Þ , for

Hð1Þ=Hð2Þ ¼ 0:5, c ¼ 0:0, lð2Þ1 ¼ lð1Þ1 ¼ 1:0, rð1Þ=rð2Þ ¼ 0:2, mð2Þ=mð1Þ ¼ 5:0.
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Thus, taking the foregoing discussions into account, consider the numerical results which are attained in the case where

mð2Þ=mð1Þ ¼ 5:0, rð2Þ=rð1Þ ¼ 0:2. First, we examine the case where the initial strains in the layers of the slab are absent, i.e. in

the case where lð1Þ1 ¼ lð2Þ1 ¼ 1:0, and investigate the dependence among the stresses Q̃
ð2Þ
22 (at yð2Þ2 ¼ �Hð2Þ; y1 ¼ 0),

Q̃
ð1Þ
22 (yð1Þ2 ¼ �Hð1Þ, y1 ¼ 0) and c under O ¼ 0, as well as among the foregoing stresses and O under c ¼ 0. The graphs of these

dependencies are given in Figs. 3 and 4 for various values of Hð1Þ=Hð2Þ.

It follows from the graphs given in Fig. 3 that the absolute values of the stresses Q̃
ð2Þ
22 and Q̃

ð1Þ
22 decrease with Hð1Þ=Hð2Þ.

This result agrees well with the known mechanical considerations. At the same time, these graphs show that for all

considered Hð1Þ=Hð2Þ the absolute values of Q̃
ð2Þ
22 and of Q̃

ð1Þ
22 increase monotonically with c and jQ̃

ð2Þ
22 j; jQ̃

ð1Þ
22 j ! 1 as c! ccr:.

Fig. 4 shows the resonance values of Oð¼ Ores:Þ and these values decrease with Hð1Þ=Hð2Þ. This decrease can be explained

with the decrease in the ‘‘stiffness’’ of the considered system with Hð1Þ=Hð2Þ.
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Fig. 7. The influence of the oscillating moving load frequency O on the distribution of the stress Q̃
ð2Þ
22 (at yð2Þ2 ¼ �Hð2Þ2 , ot ¼ p=4) with respect to y1=Hð2Þ,

for Hð1Þ=Hð2Þ ¼ 0:5, c ¼ 0:3, lð2Þ1 ¼ lð1Þ1 ¼ 1:0, rð1Þ=rð2Þ ¼ 0:2, mð2Þ=mð1Þ ¼ 5:0.

Fig. 8. The influence of the oscillating moving load velocity c on the distribution of the stress Q̃
ð2Þ
22 (at yð2Þ2 ¼ �Hð2Þ2 , ot ¼ p=4) with respect to y1=Hð2Þ , for

Hð1Þ=Hð2Þ ¼ 0:5, O ¼ 0:3, lð2Þ1 ¼ lð1Þ1 ¼ 1:0, rð1Þ=rð2Þ ¼ 0:2, mð2Þ=mð1Þ ¼ 5:0.
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Taking the foregoing results into account, we consider the distribution of the stress Q̃
ð2Þ
22 and of Q̃

ð1Þ
22 on the planes

yð2Þ2 ¼ �Hð2Þ, yð1Þ2 ¼ �Hð1Þ with respect to y1=Hð2Þ under coccr: and OoOres:. The graphs of the distribution

�jQ̃
ð2Þ
22 jyð2Þ

2
¼�Hð2Þ

Hð2Þ=P0, �jQ̃
ð1Þ
22 jyð2Þ

2
¼�Hð2Þ

Hð2Þ=P0 with respect to y1=Hð2Þ are given in Figs. 5 and 6 for the case where

O ¼ 0:0 and c ¼ 0:0, respectively. It follows from these graphs that the absolute dominant values of the stresses jQ̃
ð2Þ
22 j and

jQ̃
ð1Þ
22 j arise in the region for which jy1=Hð2Þj 	 1:0 under O ¼ 0:0 and in the region jy1=Hð2Þj 	 2:0 under c ¼ 0:0. At the same

time, these values increase monotonically with c and O.

Consider the case where O� ca0 and assume that ot ¼ p=4. Fig. 7 shows the distribution of Q ð2Þ22 Hð2Þ=P0 (at

yð2Þ2 ¼ �Hð2Þ) with respect to y1=Hð2Þ under c ¼ 0:3 for various O. The same graphs constructed under O ¼ 0:3 for various c
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Fig. 9. The influence of the initial stretching of the upper layer of the slab, i.e. of the parameter lð2Þ1 on the distribution of the stress Q̃
ð2Þ
22 (at yð2Þ2 ¼ �Hð2Þ2 ,

ot ¼ p=4) with respect to y1=Hð2Þ , for Hð1Þ=Hð2Þ ¼ 0:5, c ¼ 0:5, O ¼ 0:3, lð1Þ1 ¼ 1:0, rð1Þ=rð2Þ ¼ 0:2, mð2Þ=mð1Þ ¼ 5:0.

Fig. 10. The influence of the initial stretching of the lower layer of the slab, i.e. of the parameter lð1Þ1 on the distribution of the stress Q̃
ð2Þ
22 (at yð2Þ2 ¼ �Hð2Þ2 ,

ot ¼ p=4) with respect to y1=Hð2Þ , for Hð1Þ=Hð2Þ ¼ 0:5, c ¼ 0:5, O ¼ 0:3, lð2Þ1 ¼ 1:0, rð1Þ=rð2Þ ¼ 0:2, mð2Þ=mð1Þ ¼ 5:0.
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are given in Fig. 8. It follows clearly from these graphs that the considered distributions are non-symmetric with respect to
y1 ¼ 0. The violation of the mentioned symmetries becomes more considerable with O (Fig. 7) and with c (Fig. 8).
Moreover, the graphs show that the values of jumps at the discontinuity points increase with O and c. In these cases the
discontinuity point approaches a point at which the external load acts with O as well as with c.

The influence of the initial strain of the upper layer of the slab on the distribution of Q ð2Þ22 ðat yð2Þ2 ¼ �l
ð2Þ
2 Hð2Þ=2Þ and

Q ð1Þ22 ðat yð1Þ2 ¼ �Hð1Þ=2Þ with respect to y1=Hð2Þ is investigated. It is assumed that lð1Þ1 ¼ 1:0. The graphs of these

distributions are given in Figs. 9 and 10 for the stresses Q ð2Þ22 and Q ð1Þ22 , respectively. The graphs show that the

aforementioned dominant values of the stresses decrease with lð2Þ1 , i.e. with the initial strains on the upper layer of the slab.

Moreover, the results show that the values of a jump in the discontinuity point also decrease with lð2Þ1 , i.e. with the initial

strains on the upper layer of the slab. Moreover, the results show that the values of the jump at the discontinuity point also
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decrease with lð2Þ1 and this point moves away from the point at which the external force acts. Similar results are also

obtained for other values of the problem parameters.

6. Conclusions

From the results analyzed above the following conclusions have been reached:
�
 The values of the critical velocity ccr: of the oscillating moving load decrease with the thickness of the lower layer of the
slab.

�
 The critical velocity arises only in cases where the stiffness of the upper layer material is greater than that of the lower

layer material. This conclusion agrees with the corresponding results attained in Refs. [2,3].

�
 As a result of the oscillation of the moving load, two types of critical velocity occur: one of them (denoted by c0cr:) is

lesser, but the other one (denoted by c0cr:) is greater than the critical velocity attained for the case where the load moves
without oscillation. This statement confirms in the qualitative sense the corresponding results obtained in Refs. [10,11].

�
 The initial stretching of the upper layer causes an increase in the values of c0cr: and c00cr:; however, the influence of the

initial stretching of the lower layer on the values of c0cr: and c00cr: is non-monotonic.

�
 The values of the critical velocity c0cr:ðc

00
cr:Þ decrease (increase) with O, i.e. with the frequency of the oscillating moving

load.

�
 The values of c0cr: and c00cr: decrease with the thickness of the lower layer of the slab and approach the corresponding

values attained for the system consisting of a covering layer and half-plane.

�
 In the case where ca0, O ¼ 0 (under coccr:) and in the case where Oa0, c ¼ 0 (under OoOres:), i.e. under action of the

moving but non-oscillating load and under action of the oscillating but non-moving load, the dominant absolute values

of the stresses Q ð2Þ22 and Q ð1Þ22 increase with c and O; at the same time, in these cases the distribution of the stresses Q ð2Þ22 ,

Q ð1Þ22 has no discontinuity and is symmetric with respect to the point y1=Hð2Þ ¼ 0.
�
 In the case where O� ca0 (under coccr:, OoOres:), i.e. in the case where the oscillating moving load acts on the bi-

layered slab, the distribution of the stresses Q ð2Þ22 , Q ð1Þ22 with respect to y1=Hð2Þ have discontinuity points, the jumps

arising at these points increase with c and O.

�
 In the case where O� ca0 the foregoing symmetry of the distribution of the stresses Q ð2Þ22 , Q ð1Þ22 with respect to y1=Hð2Þ is

violated. As a result of this violation the absolute maximum of the considered stresses occurs ahead of the point

y1=Hð2Þ ¼ 0.

�
 The values of Ores: and Q ð2Þ22 , Q ð1Þ22 decrease with Hð1Þ=Hð2Þ and approach the corresponding ones obtained for the system

consisting of a covering layer and half-plane.

�
 The initial stretching of the upper layer of the slab causes a decrease in the absolute dominant values of the stresses Q ð2Þ22 ,

Q ð1Þ22 .
�
 The values of the jumps at the discontinuity points decrease and these points go away from the point y1=Hð2Þ ¼ 0 (Fig. 1)
at which the external load acts with the initial stretching of the upper layer of the slab.

�
 The results regarding the influence of the initial strains in the upper layer on the values of the critical velocity agree, in

the qualitative sense, with the corresponding ones attained in [3,7–9]. The influence of the initial stretching of the lower
layer of the slab on the distribution of the considered stresses is insignificant. Therefore, the numerical results regarding
these cases are not considered here.
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